A concise functional neural network computing the largest modulus eigenvalues and their corresponding eigenvectors of a real skew matrix

نویسندگان

  • Yiguang Liu
  • Zhisheng You
  • Liping Cao
چکیده

Quick extraction of the largest modulus eigenvalues of a real antisymmetric matrix is important for some engineering applications. As neural network runs in concurrent and asynchronous manner in essence, using it to complete this calculation can achieve high speed. This paper introduces a concise functional neural network (FNN), which can be equivalently transformed into a complex differential equation, to do this work.After obtaining the analytic solution of the equation, the convergence behaviors of this FNN are discussed. Simulation result indicates that with general initial complex values, the network will converge to the complex eigenvector which corresponds to the eigenvalue whose imaginary part is positive, and modulus is the largest of all eigenvalues. Comparing with other neural networks designed for the like aim, this network is applicable to real skew matrices. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

for Neural Networks Based Approach Computing Eigenvectors and Eigenvalues of Symmetric Matrix

K e y w o r d s R e c u r r e n t neural networks, Eigenvalues, Eigenvectors, Eigenspace, Symmetric matrix. 1. I N T R O D U C T I O N C o m p u t i n g e igenvec to r s of a m a t r i x is a n i m p o r t a n t a n d i n t e r e s t i n g p r o b l e m in eng inee r ing , especially for computing eigenvectors corresponding to largest or smallest eigenvalues. There are many important applicatio...

متن کامل

Complex-Valued Neural Network for Hermitian Matrices

This paper proposes neural network for computing the eigenvectors of Hermitian matrices. For the eigenvalues of Hermitian matrices, we establish an explicit representation for the solution of the neural network based on Hermitian matrices and analyze its convergence property. We also consider to compute the eigenvectors of skew-symmetric matrices and skew-Hermitian matrices, corresponding to th...

متن کامل

Neural-Network-Based Approach for Extracting Eigenvectors and Eigenvalues of Real Normal Matrices and Some Extension to Real Matrices

This paper introduces a novel neural-network-based approach for extracting some eigenpairs of real normal matrices of order n. Based on the proposed algorithm, the eigenvalues that have the largest and smallest modulus, real parts, or absolute values of imaginary parts can be extracted, respectively, aswell as the corresponding eigenvectors. Although the ordinary differential equation on which ...

متن کامل

A recurrent neural network computing the largest imaginary or real part of eigenvalues of real matrices

As the efficient calculation of eigenpairs of a matrix, especially, a general real matrix, is significant in engineering, and neural networks run asynchronously and can achieve high performance in calculation, this paper introduces a recurrent neural network (RNN) to extract some eigenpair. The RNN, whose connection weights are dependent upon the matrix, can be transformed into a complex differ...

متن کامل

An Implicitly-restarted Krylov Subspace Method for Real Symmetric/skew-symmetric Eigenproblems

A new implicitly-restarted Krylov subspace method for real symmetric/skew-symme– tric generalized eigenvalue problems is presented. The new method improves and generalizes the SHIRA method of [37] to the case where the skew symmetric matrix is singular. It computes a few eigenvalues and eigenvectors of the matrix pencil close to a given target point. Several applications from control theory are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 367  شماره 

صفحات  -

تاریخ انتشار 2006